Solutions to tutorial exercises for stochastic processes

T1. If $\beta+\delta=0$ then by the Kolmogorov backward-equations:

$$
\frac{\mathrm{d}}{\mathrm{~d} t} p_{t}(x, y)=0
$$

so that $p_{t}(x, y)$ is constant. Since $p_{0}(x, x)=1, p_{t}(x, y)=\mathbb{1}_{\{x=y\}}$. Now suppose that $\beta+\delta>0$. The Kolmogorov backward-equations are solved uniquely by $P_{t}=\exp (t Q)$. The matrix Q has eigenvalues 0 and $-\beta-\delta$. We can find a matrix U such that

$$
Q=U\left(\begin{array}{cc}
0 & 0 \\
0 & -\beta-\delta
\end{array}\right) U^{-1}
$$

This is solved by

$$
U=\left(\begin{array}{cc}
1 & -\frac{\beta}{\beta+\delta} \\
1 & \frac{\delta}{\beta+\delta}
\end{array}\right) .
$$

We conclude

$$
\begin{aligned}
P_{t} & =U\left(\begin{array}{cc}
1 & 0 \\
0 & \exp (-(\beta+\delta) t)
\end{array}\right) U^{-1} \\
& =\left(\begin{array}{cc}
\frac{\delta}{\beta+\delta}+\frac{\beta}{\beta+\delta} e^{-t(\beta+\delta)} & \frac{\beta}{\beta+\delta}\left(1-e^{-t(\beta+\delta)}\right) \\
\frac{\delta}{\beta+\delta}\left(1-e^{-t(\beta+\delta)}\right) & \frac{\beta}{\beta+\delta}+\frac{\delta}{\beta+\delta} e^{-t(\beta+\delta)}
\end{array}\right) .
\end{aligned}
$$

T2. (a) Let t^{*} be the time of the first jump. If $X_{0}=0$ then this t^{*} is exponentially distributed with parameter β. We now have

$$
\begin{align*}
p_{t}(0,1) & =\mathbb{P}^{0}\left(X_{t}=1\right) \\
& =\sum_{k=0}^{n-1} \mathbb{P}^{0}\left(X_{t}=1, t^{*} \in\left[\frac{k}{n} t, \frac{k+1}{n} t\right]\right) \\
& =\sum_{k=0}^{n-1} \mathbb{P}^{0}\left(X_{t}=1 \left\lvert\, t^{*} \in\left[\frac{k}{n} t, \frac{k+1}{n} t\right]\right.\right) \mathbb{P}^{0}\left(t^{*} \in\left[\frac{k}{n} t, \frac{k+1}{n} t\right]\right) . \tag{1}
\end{align*}
$$

Since

$$
\sigma\left(t^{*} \in\left[\frac{k}{n} t, \frac{k+1}{n} t\right]\right) \subseteq \mathfrak{F}_{t^{*} \wedge \frac{k+1}{n} t}
$$

we have by the tower property

$$
\begin{aligned}
\mathbb{P}^{0}\left(X_{t}=1 \left\lvert\, t^{*} \in\left[\frac{k}{n} t, \frac{k+1}{n} t\right]\right.\right) & =\mathbb{E}^{0}\left[\mathbb{1}_{\left\{X_{t}=1\right\}} \left\lvert\, t^{*} \in\left[\frac{k}{n} t, \frac{k+1}{n} t\right]\right.\right] \\
& =\mathbb{E}^{0}\left[\left.\mathbb{E}^{0}\left[\mathbb{1}_{\left\{X_{t}=1\right\}} \left\lvert\, \mathfrak{F}_{t^{*} \wedge \frac{k+1}{n} t}\right.\right] \right\rvert\, t^{*} \in\left[\frac{k}{n} t, \frac{k+1}{n} t\right]\right] .
\end{aligned}
$$

We now use the strong Markov property to get

$$
\begin{aligned}
\mathbb{P}^{0}\left(X_{t}=1 \left\lvert\, t^{*} \in\left[\frac{k}{n} t, \frac{k+1}{n} t\right]\right.\right) & =\mathbb{E}^{0}\left[\left.\mathbb{P}^{X_{t^{*} \wedge \frac{k+1}{n} t}}\left(X_{t-t^{*} \wedge \frac{k+1}{n} t}=1\right) \right\rvert\, t^{*} \in\left[\frac{k}{n} t, \frac{k+1}{n} t\right]\right] \\
& =\mathbb{E}^{0}\left[\mathbb{P}^{1}\left(X_{t-t^{*}}=1\right) \left\lvert\, t^{*} \in\left[\frac{k}{n} t, \frac{k+1}{n} t\right]\right.\right] \\
& \leq \sup _{s \in\left[\frac{k}{n} t, \frac{k+1}{n} t\right]} \mathbb{P}^{1}\left(X_{t-s}=1\right),
\end{aligned}
$$

and similarly

$$
\mathbb{P}^{0}\left(X_{t}=1 \left\lvert\, t^{*} \in\left[\frac{k}{n} t, \frac{k+1}{n} t\right]\right.\right) \geq \inf _{s \in\left[\frac{k}{n} t, \frac{k+1}{n} t\right]} \mathbb{P}^{1}\left(X_{t-s}=1\right)
$$

So the sum in (1) converges to the Riemann-Stieltjes integral as $n \rightarrow \infty$:

$$
\begin{aligned}
p_{t}(0,1) & =\int_{0}^{t} \mathbb{P}^{1}\left(X_{t-s}=1\right) \mathrm{d} F(s) \\
& =\int_{0}^{t} \beta e^{-\beta s} p_{t-s}(1,1) \mathrm{d} s
\end{aligned}
$$

where $F(s)=1-\exp (-\beta s)$. By using the same argumentation we find

$$
p_{t}(1,0)=\int_{0}^{t} \delta e^{-\delta s} p_{t-s}(0,0) \mathrm{d} s
$$

(b) By definition of the Q-matrix we have

$$
\begin{aligned}
q(0,1) & =\left.\frac{\mathrm{d}}{\mathrm{~d} t} p_{t}(0,1)\right|_{t=0} \\
& =\left.\frac{\mathrm{d}}{\mathrm{~d} t} \int_{0}^{t} \beta e^{-\beta s} p_{t-s}(1,1) \mathrm{d} s\right|_{t=0} \\
& =\left.\beta e^{-\beta t} p_{0}(1,1)\right|_{t=0} \\
& =\beta
\end{aligned}
$$

Similarly we can find $q(1,0)=\delta$. Since the row sums of the Q matrix are zero we conclude $q(0,0)=-\beta$ and $q(1,1)=-\delta$.

T3. Items (a) and (b) are equivalent since

$$
\{N(t)<\infty\}=\left\{\sum_{n=0}^{\infty} \tau_{n}>t\right\}
$$

We will now show the equivalence of (b) and (c). Let $\lambda>0$. Conditioned on Z_{0}, Z_{1}, \ldots, the random variables $\tau_{0}, \ldots, \tau_{n}$ are independent exponential random variables. Therefore, using the moment generating function of the exponential distribution:

$$
\mathbb{E}\left[\exp \left(-\lambda \sum_{k=0}^{n} \tau_{k}\right) \mid Z_{0}, Z_{1}, \ldots\right]=\prod_{k=0}^{n} \frac{c\left(Z_{k}\right)}{c\left(Z_{k}\right)+\lambda}
$$

We now take expectations on both sides and let $n \rightarrow \infty$ to find

$$
\mathbb{E}\left[\exp \left(-\lambda \sum_{k=0}^{\infty} \tau_{k}\right)\right]=\mathbb{E}\left[\prod_{k=0}^{\infty} \frac{c\left(Z_{k}\right)}{c\left(Z_{k}\right)+\lambda}\right]
$$

where we use dominated convergence to switch limit and expectation. The product $\prod_{k=0}^{\infty} \frac{c\left(Z_{k}\right)}{c\left(Z_{k}\right)+\lambda}>$ 0 if and only if $\prod_{k=0}^{\infty}\left(1+\frac{\lambda}{c\left(Z_{k}\right)}\right)<\infty$ and this is equivalent to $\sum_{k=0}^{\infty} \frac{\lambda}{c\left(Z_{k}\right)}<\infty$. We conclude by taking $\lambda \downarrow 0$:

$$
\mathbb{P}\left(\sum_{k=0}^{\infty} \tau_{k}<\infty\right)=\mathbb{P}\left(\sum_{k=0}^{\infty} \frac{1}{c\left(Z_{k}\right)}<\infty\right)
$$

